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Membrane solutions in the nonlinear theory of the equilibrium equations for shells and
plates i.e. solutions corresponding to the state of str ess under the action of tensile forces,
only, were considered in references [1 and 2]. The uniqueness of the solutions was
shown, a series of existence theorems were given, and in addijtion the asymptotic solution
in the case of small stiffness was studied in [1 and 2].

The present note considers a plate of arbitrary shape under normal load and (nonlinear)
forces on the contour, and a shell clamped along the edge and under the action of external
forces, including those radially symmetric.

It is shown that every membrane solution of these problems remults in the potential
energy minimum (second variation of the energy is positive) and is therefore stable. In
particular, it is established that every solution of a corresponding noustationary problem,
which, in the initial moment in an energy norm in HQ (see equation (3.2) below) resembles
the membrane solution, does so for all values of t > 0; i.e. the membrane solution is
stable in the Liapunov sense in the energy norm. It is also shown that alternation in the
sign of the second variation of energy results in the instability. A series of examples is
given.

1. Let us consider a system of nonlinear von Karman equations for flexible plates

(3]

A’F + wewy,, —w,2 = 0 (1.1)
e2A2w —wxxFyu —wy,Fyy -+ wanyy —q=0 (1.2)

with the edge conditions
wi[\ :O, w-n|1‘ =0 (1.3)
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F11|P=T(A)>Ox F.,”-,[‘:S(A) (AEF) (1.4)

Equations (1.1) to (1.4) are written in dimensionless form. At the same time

_ _wy _ qa g h?
F=fa, w=7, 9=pg, ¢ TR0 —pha
- N — =T 1

=, Y= =, TEA (0<P<"2—)

Here F, is a stress function, w, is the deflection of points on the median surface, g,
is the transverse load intensity, A is the plate thickness, £ is Young's Modulus, y is the
Poisson’s ratio, (Z;, ¥;) denote rectangular coordinates, I is the boundary of a simply
connected region (), a is the diameter of this region, n, and 7, normal and tangential
boundary stresses respectively, and F;: (4) and Fp. (A) , normal and tangential

components of the external forces applied at the plate contour [3].

The functional of the potential energy of the plate corresponding to the problem (1.1)

to (1.4) may be written in the form

T = %2 §[(Aw)2_2 (1 — p) (Waattyy — wiy)) dz dy —
— 5 UAFY —2(1 4 p) (FuF oy — F.2)] dudy + (1.5)
[9]

+ —;"Sllpnwf + Fyw.? — 2F qw,w,) dx dy—§w dz dy

Then every sclution of the problem (1.1) to to (1.4) results in the minimum of the
functional J with respect to the function w satisfying the boundary conditions (1.3). Here,
the function F is considered as a solution of (1.1) with the boundary conditions (1.4). Let
(D, W) be the membrane solution of the problem (1.1) to (1.4), i.e. let the conditions

D >0, Dy >0, Oy — Dy >0 (1.6)
be satisfied at every point of the region ).

We shall show that the second variation of the functional / is positive for the
membrane solution. Let us denote by 7 the allowed variation in w and consider the
functional J on the set of functions W —a7). Then F should be a solution of the bound-
ary problem (1.1) and (1.4). It is easy to see that F may be represented in the form

F =0 -+ ag +a21p 1.7)

where ® satisfies an equation of the type (1.1) but with w substituted for Wand with the
boundary conditions (1.4) ; the function @ satisfies the equation

Al = ZWWnW—Wmnw_anxx’ ? lI‘ =0, P IP =0 (1.8

while the function 1 satisfies the equation
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Az\p = qug_. nxxnyy' ‘p ’r‘ = O! ‘pﬂ [P = 0 (1-9}

Equations (1.7) to (1.9) are obtained from (1.1) to (1.4) by substituting W --an

for w. Calculating 8%J, we obtain

1= L8| el =@+ (@ 0+ 0 W) — Lt
L(n)=4 §{(An) —2(1 — 1) (M — M2} ddly

I, (9)

(1.10)

%~§{(A¢)’—— 2(1 + p) (9.9, — 9.2} dz dy

Il

1 (1.1
Is(a, b)= —+ Sl(aﬁb,f + Gyybe? — 2ar,biby) dz dy

[425){‘|7w(®w PODx) + Pz (e — pDyy) + 2(1 + 1) $2y Py} dz dy

L=\te. W, +o,Wn,—o,W,n +Wn)dedy
e}

Integrating by parts and taking the boundary conditions, (1.8) and (1.9) into account,

we have

Iy (9 W) = §¢A=® dedy = I,

(1.12)
= §<A«p>* dzdy, (@9, —0dvdy=0
Q
Assuming (1.5), we obtain from (1.10)
8 =e, (n) + 12 (@ + 1 (D, ) (1.13)

It should be noted that [ (®, 1) > 0 by virtue of (1.6), and consequently
8 >0 (n==0) (1.14)
Hence the membrane solation results in the minimum of J.

2. At this stage, we shall consider the equations for a shallow shell occupying in its
plane a region {} with a boundary I" [4]

put] +Pex = — 1= [h0), + w0+ (hye), + o) —
__.wxuwy"“'wxww—fl (O=1ux+wy)
20+ 126y — — 1 (), + wiy + (k) + paoato] — (
2.2)

e Wiy — Wyylr = [
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D/ 2w = ‘{‘ F]/y (wxx - k ) + 1' ( - kg) - Zquu)xy (2.3)

Eh Eh Eh
F, = {:’;L—z(ex + ney), Fax= r:}jg(ez + ney), Fyy= YT T 813 2.

£ = U+ kw - Yawn?, 8y = vy -+ kaw + Yauwyt, €19 = Uy + Vx + wxwy
The shell is clamped along the edge and the boundary conditions are
w|p=0, w|.=0, ulp=0, v|,=0 (2.5)
Fvery solution of (2.1) to (2.5) results in the minimum of the functional

T (1) = -\ {(00) — 2(1 — ) (waryy — wel)} da dy +
Q
1 2 2 P
-+ z“E”EK{Fx;—§— Foy—2uFFyy +-2(1 + p)Fxf,}da;dy—{-Sdexdy
1] Q
with respect to the function w satisfying conditions (2.5). The functions Fix, Fyy, and

F., are expressed by formulas (2.4) with u and v considered as solutions of {2.1) and
(2.2).

(2.6)

As in section 1, let {®, W) be the membrane solution of (2.1) to {2.5). Let us compute
the second variation. To do this, we shall consider the functional / or set of functions
W+ a1. Then F may be represented in the form (1.7). At the same time, O satisfies
equations of the type (2.4}, {2.1), (2.2) and (2.5), but with & substituted for F and w for W.

The function @ satisfies the relations

P, = d—gﬂl == 1—_%“;;2 (Ui + kM + Walle + B (v -+ Fan) + W)
; )
dF ry Eh
o = gy ;Po = r:’ (o1 + &an + Wuny + B (#1e + Bt = Waa)] (g 4
d
Py = %:ﬂ a==0 ) (1 +P') (Bay + 21z + Wty + Wyns)

Here the functions u, and v, are determined from the equations

Alh‘f‘ 1 fu, fuz'&%fl (W 4 an)la=o; ui!rzo

d
Apy - i_ﬁ ew = far, fo = o f2(

(2.8)

s U1II‘=0, 01 = tix + vy
a=0

Function ¢ satisfies the relations

1 d2F Eh 1 B
e~ e T=m <3’2z: + 7'%2 + Mg + 5~ ﬂx?')
1 d®Fy ER?
Py = - da:y b =1 e (uzx “‘|‘ M* + Wogy + 2) (2.9)
1 42F Eh
Yoy = —y da;ru o =T i m (2ay + vax -+ NxNy)
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Here the functions u, and v, are determined from the equations

(2.10)
1
Au2+ +’L ezx—flzy Av, +1i: B2y = far, f12=-;—g-;-2f1(w+°‘-"l)‘a 0

1 ,
fum g AW tan)| . wlh=0, valp=0, G =usxt oy

Formulas (2.7) to (2.10) are obtained from (2.1) to (2.5) by substituting W - an
for w. Now, from (2.6), according to (1.10) and applying (1.7}, we obtain

6’J=D11+-E17I2+Ei}114 2.11)

Using (2.9) and integrating by parts while taking account of boundary conditions
(2.10) we obtain

I, =I3 (D, M) (2.12)
Therefore
87 = DI, (n) + 2 s @ + Is (@, 1) (2.13)
From this we obtain
B¥I>0 (n=*0) (2.14)

for the membrane solution.

Finally, we consider the case of a symmetrically loaded shell of revolution, clamped
along the edge. We shall transform the coordinates in (2.1) to (2.5) into polar (r, @) and
introduce the dimensionless quantities

p:

s~

F P
v omo=w, v=gf, @) =jgl\e®u @19
0
For a symmetrical solution we obtain the equations (5]

d h* d

uo? =
Avy—-F +0(p)m=0, A( )=—pp—o5r( ) @6

h
g2 Aug + uovo— 0 (p) vo + 9o (0) = 0, = pu—mas @17

_ dv, il _ 1799
wha =0 [F—4w] -0 3

<% (3.18)

From (2.6) we find, by applying (2.15), the corresponding functional: (
2.19)
1

5§ (0902 + 25 ) do — L 06* (1) + Y @0 (0) o
0

[}

g? 1

J (o) = —5- IS (Pum% + dP + 5

0
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with respect to a function u, satisfying the boundary conditions (2.18). The function v, is
considered to be a solution of equations (2.16) and {2.18).

Let us find the second variation of J (i4g) for the membrane solation ¥,, U, (i.e.

v, > 0, see[1]). We consider the functional / on the set of functions i, = U, + an.
Then analogously to section 1, v, may be represented in the form
Vo =, + ap 4 ap (2.20)
where @ satisfies the equation

de

— = 9 _ P ol = 2
A@—umn+6n=0, [dp 5 <P.L=l 0, . a=o< oo (2.21)
and where ¢ is the solution of the problem
N Sy W _p - L ,
Ap—4me=0, [dp . xpL=1 0, E| <o @m
By (1.12), and using (2.21) and (2.22), we have
(2.23)

1
02 = %g(Pﬂpz + '2—2) dp + —;‘IS(PCP? + %i') dp— %‘PZ 1)+ %S v n*dp
0 H

[}
Since v, >0, the last integral in (2.23) is positive and consequently 837 > (),

3. To give more precise information on what should be understood by the word
stability, we consider the nonstationary equations of the theory of shallow shells
{formulas 2.5 to 2.8 and notation of [6], are used).

Let the second variation 827 calculated for the stationary solution W (see 1.10)

satisfy the condition
BI>minl,  (m>0) 3.1

Here 1] is an allowed variation of the displacement w. We note that in the above
problem this estimate easily follows from the membrane solution of (1.10) and {2.11).
Further, let

Inelerin + Imiela = ]z, 3.2)

and w {x, y, #) be an arbitrary solution {though generalized) of the known nonstationary
system, continuous in ¢t for { 2> 0 as a fanction of tin Hp. Let ¢ > 0 be any
number. Then such 5 > 0 can be found, that from the inequality

“ w (x’ U, O) — W (3, y) H Hﬂ< 8 (3.3)
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it follows that
lw(z, yt)— Wz, y llgg<<e for t>0 (3.4

rr
In other words, the stationary solution W is stable in the Liapunov sense in flq.
To prove this we shall note that the potential energy J [w (6] may be presented in the

form

J(W +n) =J (W) +8J +R(n) (3.5)

Here the functional R (1) has the form

1
R(n) =5 S) (Pl + Pl — 2QxMeMy) d2 dy (3.6)
where Qxx, Pyy, and Quy are defined in (2.7). We shall show that the estimate
(3.7
RO |< malnl,
holds.
Let us consider the typical terms in the expression {3.5)
Ri(m) = S wy,? dz dy, Ry;(m) = S Mt da dy
Q Q
(3.8)
Ry(n) = § kmldzdy,  Ry(m) = § Wonne® dz dy
We have, by virtae of the insertion theorem 7
IWylepo <MWk, el < malnlag (2>1) (3.9)
Further, from (2.8) one may obtain
H uhﬂ[‘zﬂ < mg B 1 Hgggv H Uiy RLG < my ” n mgzn {(3.10)

These estimates were obtained in [6] in formulas (2.41) to (2.45). From (3.8), applying
the Buniakovski's inequality and utilising (3.9) and (3.10), we obtain

| R; (0) | << ma|n[eza (i=1,2,3,4) G.11)
Now (3.7) follows from (3.11), and from similar estimates for the other terms in (3.6).

The considerations which follow, are analogous to the proof of the Liapunov stability
theorem [8]*. The functional ¥ determined by formula (3.16) plays the role of a Liapunov

function.

* Note that in Movchan’s work [15 and 16] the theorems of Liapunov and Chetaev are applied
to certain classés of infinite conservative systems.
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We shall write the given nonstationary system in the form
Wy = — grad J (W) (3.12)
Solutions of (3.12) satisfy the energy integral
2 i :
[[we IIHm + 2J(w) = const (3.13)

Letusput 1 (2, ¥, t) =w (2, ¥y, t) — W (&, ¥). From (3.5) and (3.13) it follows
that

by, +2J (W) + 26 2R (n) = const 5.19
Hence
Vi(t) =|nliha + 2827 (n) + 2R (n) = (3.15)

= " Not ||H?n + 28°J (no) + 2R (M) = V1 0), Mo = M=o
From (3.15) and (3.1) we obtain

V) =cinly, +RM<Vi®) =V10) (3.16)
Here ¢ = min (1, m), and R (1) satisfies the inequality (3.7).
Let us consider a sphere §, in the space H

Infad = Inelaia +1nlaz = & (3.17)
Let ! be the lower bound of the functional ¥ on §,. Then, by (3.7), we find

. . 1 2
{ = infs, V > infg, [c]n]ad — m1|n[ad] > 02_3>0, i o<y (%) (3.18)
Further, by analogy with (3.8), we obtain the estimates
I, (@ << mg “"]“ ?Im’ I3 (D, M) < ms “"l“ 2320 (3.19)
Now using (3.19), (2.11) and (3.7) we obtain from (3.15) that if ” Tlo” %{Q <6, then
V() <Vy(0) <<md + 2m,8% =86, (3.20)

From this (3.4) follows. Indeed, if we assume that a point appears at a certain time ¢,

on the sphere S, then

V (t) > infs, V = 1>0
Which contradicts (3.20) if 6, <7 [,

4. We shall now consider the case when the second variation is not positive definite.

In particular, let the condition
o7 < —minly, (EE m>0)
be fulfilled on a certain space £ C Hyq -

(4.1
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(1f E coincides with H,q, then §2J has a strong maximum.) Then the stationary

solution W is unstable in the Liapunov sense in the space Hq.

For proof, we consider the functional and its derivative with respect to ¢

A(t) = S mmedzdy, A (t) = S n2dxdy - g MMy dz dy (8.2)

Q Q Q

We shall show that a small number € can be found such that
AW>mney >0 (>0, neE) it [nlgg<le (4.3)
Assuming the solution to be in the form

w=W +n, F=0+4+9 4+ (4.4)

we derive from non-stationary equations of the problem, the equations of perturbed motion

Ny + A% — [, @1 — [0, +9] — [W, @ +9] =0 45
A% +Ilw,nl =0, A%+ [n,nl =0 (4.6)

Here the notation [a@, b] = @uxbyy + @yybax — 2axbxy is used. Using (4.5) and
(4.6), we find

{ e dody = — 264 + R, (n)
Q

R,(m)=—3 { ApAy dzdy —2 § (AV)* dz dy
Q

(4.7)

Using (2.7), (2.9) and (3.10) together with estimates (2.50) from [6], we obtain from
4.7
R m
1B, MI<manp, 8)
Now the estimate (4.3) follows from (4.2) and (4.8), provided N[ yy <€ aad g
is sufficiently small. Further, let us consider a set of such 7 for which

4o = § oMot dz dy >0, Mo =1 Jt=o (4.9)

By (4.3), for suchp A (£) > 0. Then the instability of W can be shown using the
Liapunov theorem on instability (see, e.q. [9]). Here, the functional 4 plays the role of

the Liapunov function.

5. We shall consider a number of particular cases.

(a) In the class of axially-symmetric solutions, the equilibrium of a symmetrically
loaded plate under a variety of boundary conditions {10 and 11] is unique and therefore
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stable. Indeed, from the uniqueness of the solution it follows that a strong minimum is
reached on it.

(b) It was shown in [13 and 14] that the second variation 82 J(n) < 0 (for some 7))
for symmetrical equilibrium of a circular plate uniformly compressed around the edge by
sufficiently large loads, as well as for a rigidly clamped circular plate under uniform
pressure. Section 4 shows in what sense these solutions are unstable.

(¢) The axially symmetric equilibrium of a symmetrically loaded plate rigidly fixed
around the edge is a membrane equilibrium [2] and therefore stable (with respect to non-
symmetrical disturbances). In connection with this, it is interesting to note that the solu-
tion in this case is not unique 112] and that the absolute minimum of the energy is reached
in the state of nonsymmetrical equilibrium.
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