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Membrane solutions in the nonlinear theory of the equilibrium equations for shells and 

plates i.e. solutions corresponding to the state of stress under the action of tensile forces, 

only, were considered in references [I and 21. The uniqueness of the solutions was 

shown, a series of existence theorems were given, and in addition the asymptotic solution 

in the case of small stiffness was studied in [l and 21. 

The present note considers a plate of arbitrary shape under normal load and (nonlinear) 

forces on the contour, and a shell clamped along the edge and under the action of external 

forces, including those radially symmetric. 

It is shown that every membrane solution of these problems raults in the potential 

energy minimum (second variation of the energy is positive) and is therefore stable. In 

particular, it is established that every solution of a corresponding nonstationary problem, 

which, in the initial moment in an energy norm in Hn (see equation (3.2) below) resembles 

the membrane solution, does so for all values of t > 0 ; i.e. the membrane solution is 

stable in the Liapunov sense in the energy norm. It is also shown that alternation in the 

sign of the second variation of energy results in the instability. A series of examples is 

given. 

1. Let us consider a system of nonlinear von K\arm\en equations for flexible plates 

[31 

A’F + WOW,, - wd = 0 

e2A”w - wxrFulr - w~$‘~ + 2w,F,, - q 

with the edge conditions 

wlr =o, &Jr =o 

(1.11 

0 
(1.21 

(I.31 
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Equations (1.1) to (1.4) are written in dimensionless form. At the same time 

F=+, w=E!_ w 8” = h2 

a ’ Q=.,, 12 (1 - pL”) a2 

~=.s. 
a ’ 

y=y’ 
a ’ 

n=?!!- 
a ’ 

+- (w<f) 

Here F, is a stress function, w1 is the deflection of points on the median surface, q1 

is the transverse load intensity, h is the plate thickness, E is Young’s Modulus, p is the 

Poisson’s ratio, (Z,, yt) d enote rectangular coordinates, r is the boundary of a simply 

connected region n, a is the diameter of this region, n, and 7,. normal and tangential 

boundary stresses respectively, and FT5 (A) and F,,+ (A) , normal and tangential 

components of the external forces applied at the plate contour [3]. 

The functional of the potential energy of the plate corresponding to the problem (1.1) 

to (1.4) may be written in the form 

J(w) = f 

% 

I (Aw)” - 2 (I- CL) (wp2uyt, - wr;) ] dz dy - 

- +(A~)’ --(l+~)(F~,--~)ld~dy+ (1.5) 

+ + 

! 
[F,s,,” + Q,wx2 - 2F,w~w~ dx dy - 

z 
pdxdy 

Than every solution of the problem (1.1) to to (1.4) results in the minimum of the 

functional I with respect to the function w satisfying the boundary conditions (1.3). Here, 

the fnnction F is considered as a solution of (1.1) with the boundary conditions (1.4). Let 

(0, w) b e t h e membrane solution of the problem (1.1) to (1.4). i.e. let the conditions 

@a.x>O, ~t/tJ>O9 Qc&+/, - (D,: > 0 (1.6) 

be satisfied at every point of the region n . 

We shall show that the second variation of the functional / is positive for the 

membrane solotion. Let us denote by 7~ the allowed variation in w and consider the 

functional 1 on the set of functions w -j-IX~. Then F should be a solution of the boond- 

ary problem (1.1) and (1.4). It is easy to see that F may be represented in the form 

F=@ +acp +CZ~ (1.7) 

where 0 satisfies an equation of the type (1.1) but with w substituted forwand with the 

boundary conditions (1.4) ; the function cp satfsfies the equation 

A29 = 2W9, - wxz’lyv - wvvrlnt Cp 1, = 0, ‘T’,, ir = 0 (1.8) 

while the function Ip satisfies the equation 
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Equations (1.7) to (1.9) are obtained from (1.1) to (1.4) by substituting &’ +atl 

for w. Calculating 62J, we obtain 
(1.10) 

&2J_ _!L@J 

- 2 daa e=o 
= $1, (q) ----a (cp) + 13 (a, 9) + 1s (‘i’, W) - I4 +- ‘6 

Integrating by parts and taking the boundary conditions, (1.8) and (1.9) into account, 

we have 

18 (4% Y = $AW da: dy = I4 

1, = (A~}adxd~, -qQdxdy = 0 
(1.12) 

Assuming (1.51, we obtain from (1.10) 

It should be noted that Ia (@, q) > 0 by virtue of (1.61, and conseqaently 

PJ >o (9+0) 
(1.14) 

llence the membrane solution results in the minimom of I. 

2. At thitr stage, we shall consider the equations for a shallow shell occupying in its 

plane a region n with a boundary r [4] 
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D,/‘.~w = is -t F,,, (wxr - k,) + lp, (ww - k,) - =%,74cv 
(2.3) 

8 12 = uv+%-+wcw, 

The shell is clamped along the edge and the boundary conditions are 

wlr=O, WI 1, = 0, H‘ If. = 0, v),=O 

Every solution of (2.1) to (2.5) results in the minimum of the functional 

J (21’) = $ \ { (aw)” - 2 (1 - p) (wmwuy - w,)} d3 dy + 
it 

(2.5) 

+ kx $ (F,: + F;, - 2pF,F,, + 2 (I+ p) F$ dz dy + c,” ds dy (2*6) 
n 

with respect to the function w satisfying conditions (2.5). The fnnctions F,, Fv,, and 

F,!, are expressed by formulas (2.4) with u and v considered as solutions of (2.1) and 

(2.2). 

As in section 1, let (6, W) be the membrane solution of (2.1) to (2.5). Let ns compute 

the second variation. To do this, we shall consider ih8 functional I or set of functions 

w + a~. Then F may be represented in the form (1.7). At the same time, @ satisfies 

equations of the type (2.4). (2.1). (2.2) and (Z.S), but with @ substituted for F and w for F@‘. 

The function cp satisfies the relations 

Here the functions al and vl are determined from the equations 

4x$/ = 
f daF, 

= 2 da” 
a=n 

- g$ h4 + 82x + wlv) 
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Here the functions uI and vI are determined from the equations 

(2.10) 

0% + z 8, = f12, Av2 +z 02, = f22, f1a = -gjil v + 4 1 
a=0 

fza=+~fa(~+~~)l 
Ia=O 

U2lp = 0, Q.= 0, 0% =7&x+ v2y 

Formulas (2.7) to (2.10) are obtained from (2.1) to (2.5) by substituting w $ ay 

for w. Now, from (2.6), according to (1.10) and applying (1.71, 

PJ=DI,+&,+& 

Using (2.9) and integrating by parts while taking account 

(2.10) we obtain 

I, = 1, (@, rl) 

Therefore 

we obtain 

(2.11) 

of boundary conditions 

(2.12) 

From this we obtain 

for the membrane solution. 

PJ>O (11 +o) (2.14) 

Finally, we consider the case of a symmetrically loaded shell of revolution, clamped 

along the edge. We shall transform the coordinates in (2.1) to (2.5) into polar (r,(p) and 

introduce the dimensionless quantities 

P=$. uo = WP, 
FP 

vo=z, (2.15) 

0 

For a symmetrical solution we obtain the equations [5] 

Av o-$ _t9(p)u,=O, A( )=-P$f$f( ) (2.16) 

e2Auo + uovo - 8 (p) vo + ‘PO (p) = 0, 
h 

es = 12 (1 --a) up (2.17) 

uo~p=l=o’ [ 2 - $vo] 
p=1 

=o, u” ( T p=o 
<m, T <m I P=O (2.18) 

From (2.6) we find, by applying (2.151, the corresponding functional : 
(2.19) 

J(Q) =~~(~“~~+~)~~+~j(~v~~+~)dp-~v~~(~~~I,~(p~~~~p 
0 0 0 
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with respect to a function aa satisfying the boundary conditions (2.18). The function va is 

conaidtred to be a solution of equations (2.16) and (2.18). 

Let us find the second variation of .T (~0) for the membrane solution V,, Us (i.e. 

V, > 0, see [ 11). W e consider the functional I on the set of functions u,-, = U, + a~. 

Then analogously to section 1, v. may be represented in the form 

v. =IV* + aq + a%# (2.20) 

where cp satisfies the equation 

4-- u*q+~q=O, [ ph] 
P _@=I 

=o, -y <co 
o p=o 

(2.211 

and where I# is the solution of the problem 

4+1~=0, I+$‘-$91 =o, +l,,<m (2.22) 
p=1 

By (1.12), and using (2.21) and (2.22), we have 

(2.23) 

Since vs > 0, the last integral in (2.23) is positive and consequently @J> 0. 

3. To give more precise information on what should be understood by the word 

stability, we consider the nonstationary equations of the theory of shallow shells 

(formulas 2.5 to 2.8 and notation of (61, are used). 

Let the second variation 6o.I calculated for the staticwary solution W (see 1.10) 

satisfy the condition 

@J > m II ‘1 lkr& (m>O) (3.1) 

Here q is an allowed variation of the displacement w. We note that in the above 

problem this estimate easily follows from the membrane solution of (1.10) and f2.11). 

Further, let 

II t-h II& + II rl lb”,, = II rl II& (3.2) 

and w (u, y, t) be an arbitrary solution (though generafired) of the known nonstationary 

system, continuous in t for t > 0 as a fnnction of t in Ha- Let e > 0 be any 

number. Then such 6 > 0 can be found, that from the inequality 

11 w (a Y, 0) - w (G Y) 11 Hn < * 
(3.3) 
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it follows that 

/I ZfJ (5, Yt t) - w (5, YI Ii HQ < E for t>o (3.4) 

In other words, the stationary solution IV is stable in the Liapunov sense in Ha. 

To prove this we shall note that the potential energy / [W (t)l may be presented in the 

form 

J(W 3-9) =J (w) +-8V -j-R (?j) 

Here the functional R (7) has the form 

J? (qf = + 
$ 

(~)lixrt,~ + ‘pytirlzz - ~R,QS,) dx dy 

where r#&, qvVt and ‘przl are defined in (2.7). We shaI1 show that the estimate 

holds. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3. IO) 

These estimates were obtained in [6] in formulas (2.41) to (2.45). From (3.8). applying 

the Buniakovski’s inequality and utilising (3.9) and (3.10). we obtain 

Pi(r ~~~~1~~~ (i = 1,2,3,4) (3.11) 

Now (3.7) foIIows from (3.11). and from similar estimates for the other terms in (3.6). 

The considerations which follow, are snalogcus to the proof of the Liapunov stability 

theorem [S] *. The functional V determined by formula (3.16) plays the role of a Liapunov 

function. 

* Note that in Movchan’s work [IS and 161 the theorems of Liapunov and Chetaev are applied 
to certain class&3 of infinite conservative systems. 
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We shall write the given nonstationary system in the form 

wtt = - grad J (w) (3.12) 

Solutions of (3.12) satisfy the energy integral 

llwt II 2 Hln + W(w) = const (3.13) 

Let us put 11 (Z, II, i?) = W (2, Y, t) - w (2, y). From (3.5) and (3.13) it follows 

that 

Hence 

11~ 11 sIa + 2~ (w) + 2PJ + 21-i (71) = const (3.14) 

VI (t) = II rl &L-I + a2J (q) + 2R (rl) = (3.15) 

= II riot II& + 26’J (qo) + 2~ (~0) = VI 0% ro = rl It=o 

From (3.15) and (3.1) we obtain 

v @) = elIIfx* + R b-d< ‘VI (4 = VI (0) (3.16) 

Here c = min (1, m), and R (‘$ satisfies the inequality (3.7). 

Let us consider a sphere ,‘j’, in the space Ha 

II tl llH”n = II ‘It II&2 + II rl II& = 8 
Let 1 be the lower bound of the functional V on S,. Then, by (3.7). we find 

(3.17) 

1 = infs, V > infs, [c I/ ‘1 /la”, - ml II q Il&J > 7 > 0, if 

Further, by analogy with (3.81, we obtain the estimates 

1, kJ) < % II rl II &,~ 1, P, rl) < me II rl II iIan (3.19) 

NOW using (3.19). (2.11) and (3.7) we obtain from (3.15) that if II ~11 kn < 6, then 

v (4 < VI (0) < m,6 + 2m,&‘/~ = 6, (3.20) 

From this (3.4) follows. Indeed, if we assume that a point appears at a certain time to 

on the sphere S,, then 

V (to) > infs, v = I > 0 

Which contradicts (3.20) if 6, < 1. 

4. We shall now consider the case when the second variation is not positive definite. 

In particular, let the condition 

a2J < - 4h!I ir2* PIE% m>O) 
(4.1) 

be fulfilled on a certain space E c H,n . 
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(If E coincides with Hzn, then iYJ h as a strong maximum.) Then the stationary 

solution Iy is unstable in the Liapunov sense in the space Hn. 

For proof, we consider the functional and its derivative with respect to t 

A’ (t) = s qt2 dx dy -I- \ qqtt c-h dy (4.2) 

a 51 it 

We shall show that a small number E can be found such that 

A’ (t) > m I/ q Ii& > 0 (ml> 0, q E El if 11 q ItHa < & (4.3) 

Assuming the solution to be in the form 

w =w+rl, F=@+cp+‘P 
(4.4) 

we derive from non-stationary equations of the problem, the equations of perturbed motion 

qtr + &2A2q - [q, 01 - 1% cp +$I - tw, Cp +‘/‘I = 0 (4.5) 

A2’p + [W, rll = 0, A% +‘/2 h, ql =o (4.6) 

Here the notation [a, b] = hb,,+ a,&~ - ~u.&cc~ is used. Using (4.5) and 

(4.6). we find 

5 rlrltt dxdy = - 2PJ + R, (q) 
cl 

R* (rl) = - 3 i AcpA$ dx dy - 2 (A$)* dx dy 
n 

(4.7) 

Using (2.7). (2.9) and (3.10) together with estimates (2.50) from [a], we obtain from 

(4.7) 

(4.8) 

Now the estimate (4.3) follows from (4.2) and (4.8). provided 1 q 11 Hn < 8 aad 8 

is sufficiently small. Further, let us consider a set of such q for which 

Ao = 1 qorlothdy>O, rlo = rl Itxo (4.9) 
n 

By (4.3). for such 7 A (t) > 0. Then the instability of W can be shown using the 

Liapunov theorem on instability (see, e.q. [9] ). H ere, the functiona A plays the role of 

the Liapunov function. 

5. We shall consider a number of particular cases. 

(0) In the class of axially-symmetric solutions, the equilibrium of a symmetrically 

loaded plate under a variety of boundary conditions [lo and 111 is unique and therefore 
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stable. Indeed, from the uniqueness of the solution it follows that a strong minimum is 

reached on it. 

(6) It was shown in [13 and 141 that th e second variation e2 J(R) < 0 (for some II) 

for symmetrical equilibrium of a circular plate uniformly compressed around the edge by 

sufficiently large loads, as well as for a rigidly clamped circular plate under uniform 

pressure. Section 4 shows in what sense these solutions are unstable. 

(c) The axially symmetric equilibrium of a symmetrically loaded plate rigidly fixed 

around the edge is a membrane equilibrium [2] and therefore stable (with respect to non- 

symmetrical disturbances). In connection with this, it is interesting to note that the solu- 

tion in this case is not unique [12] and that the absolute minimum of the energy is reached 

in the state of nonsymmetrical equilibrium. 
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